Department of Computer Science

BTech Academy Final Report

2006

AARN MAPPING TOOLS RESEARCH AND DEVELOPMENT

 Paige XIE

Academic Mentor: Dr S Manoharan
Industry Sponsor: Barry Dowdeswell
Abstract
The report is written for BTech 450 project in 2 semesters 2006. The project is AARN mapping tools research and development which is sponsored by AARN innovation limited. AARN mapping tool is a software tool which is used to validate the individual XML message segments using the XML schema. Before focusing on the project, there are two schemas DTD and XML schema need to understand, because AARN innovation limited need to support those two schemas. DTD is Document Type Definition which is a set of formal definitions for the individual data elements that are used in an XML document; XML schema is a description of a type of XML document, typically expressed in terms of constraints on the structure and content of documents of that type, above and beyond the basic syntax constraints imposed by XML itself. XML schema is more advanced than DTD; it can define the type for the element more specified than DTD. As DTD is older than XML schema, DTD has native limitations than XML schema. DTD is simpler than XML schema to implement. After having a clear understanding of the concepts, let’s look at the project. The mapping tool is to generate a XML message template based on a schema, and then build a link between the XML message template and the corresponding schema. Each XML message template segment has a corresponding type or information defined in the schema. The mapping tool not only validate the XML message, also point out where is invalid and what kind of content should appear on the XML message.

Contents
4Introduction

4Background information DTD and XML schema

5What is XML?

6Document Type Definitions

7The W3C XML schema definition

8Comparison of DTD and XML schema

9What is EDIS map?

10The EDIS map enhanced development environment

13The integrated eBasic development language

14Powerful in-line debugging during compile and run-time development

14The Design of the Application

19The EDIS map Integrated Development Environment

19State Control in the EDIS map environment.

20Opening a message script

22Retrieving the message file information

24Editing the message file

26The EDIS map Implementation strategy

26Link the message file to XML schema

27Trace back to the previous valid state

27Coding the application

28The Limitations

29Conclusion

29References

Introduction
The project is sponsored by AARN innovation limited which is focus on the mapping tool. The mapping tool is a software tool to validate individual XML message segments using the XML schema.

The mapping tool is used to valid the incoming XML message or the data from database. In the message exchange architecture, EDIS map facilitates the creation of translation scripts in several ways. It offers a set of templates for standard translation tasks that can be easily modified and adapted according to the business rules of a particular business partner. New message translation scripts can be created by importing sample message or message schemas. The source (message definition) which is built by EDIS map will be compiled into a script. The script is run by EDIS events to retrieve the data from the database to build a XML message, or extract the data from the incoming XML message to store into the database. Here the schema is more important. The data should be validated when the script processes them in order to store in the database or write to the XML message.

[image: image1]
Background information DTD and XML schema
Before starting the project, there is some background knowledge which is required to understand. Since all the following coding is based on the background knowledge DTD and XML schema.

What is XML?

The Extensible Markup Language (XML) is a W3C-recommended general-purpose markup language for creating special-purpose markup languages. They are capable of describing many different kinds of data. It is a simplified subset of the Standard Generalized Markup Language (SGML).

Its primary purpose is to facilitate the sharing of data across different computer systems, particularly systems connected via the Internet. Complete languages based on XML such as the Geography Markup Language (GML), MathML, Physical Markup Language (PML), MusicXML and cXML) are defined in a formal way, allowing programs to modify and validate documents in these languages without prior knowledge of their form. [1]

A schema is a linguistic model which provides a means for defining the structure, content and to some extent, the semantics of XML documents. There are two main schema types used to validate the XML documents; the DTD or Document Type Definition and the XML schema.
Here is a XML message file called DeliveryReceipt.xml:
	<?xml version = "1.0" ?>

<DeliveryReceipt deliveryID = "44215"

 dateReceived = "2001-04-16"

 xsi:noNamespaceSchemaLocation =

 "http://file_Location/DeliveryReceipt.xsd"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-

 instance">

 <Customer>

 <Name>

 <FirstName>Ray</FirstName>

 <MiddleInitial>G</MiddleInitial>

 <LastName>Bayliss</LastName>

 </Name>

 <Address>

 <AddressLine1>10 Elizabeth Place</AddressLine1>

 <AddressLine2></AddressLine2>

 <Town>Paddington</Town>

 <City>Sydney</City>

 <StateProvinceCounty>NSW</StateProvinceCounty>

 <ZipPostCode>2021</ZipPostCode>

 </Address>

 </Customer>

 <Items>

 <DeliveryItem quantity = "2">

 <Description>Small Boxes</Description>

 </DeliveryItem>

 </Items>

</DeliveryReceipt>

Inside this XML document, there is one root element “DeliveryReceipt” which has 2 attributes “deliveryID”, “dateReceived” and 2 sub-elements “Customer”, “Items”. Inside each sub-element, they have their own sub-elements. The XML document is playing a role as database here. The data in database can be stored in another way - XML document.

Document Type Definitions
A Document Type Definition or DTD is a set of formal definitions for the individual data elements that are used in an XML document. It is far more simplistic than the XML schemas we will examine later in this document

The purpose of the DTD is to define the structure of a class of similar documents by describing each allowable element and attribute by using a formal declaration language. Element declarations name the allowable set of elements within the document, and specify whether and how declared elements and runs of character data may be contained within each element. Attribute-list declarations name the allowable set of attributes for each declared element, including the type of the data that is allowed to be stored in each attribute value. It is also possible to specify that the data must be a member of a set of pre-defined values.

At its most fundamental level, the DTD is expressed as a Context-Free Grammar. In linguistics and computer science, a grammar is an abstract structure that describes a formal language precisely. An abstract structure is a set of laws, properties and relationships that is defined independently of any physical objects.
A context-free grammar or CFG is a formal grammar in which every production rule is of the form V → w where V is a non-terminal symbol and w is a string consisting of terminals and/or non-terminals. A terminal symbol is a symbol that represents a constant value. A non-terminal symbol is that symbol which has the capability of being further defined in terms of terminals and/or non-terminals. The term "context-free" comes from the fact that the non-terminal V can always be replaced by w, regardless of the context in which it occurs. A formal language is context-free if there is a context-free grammar that generates it.

Here is a DTD schema example:

	
<!DOCTYPE stack-of-purchase-orders [
<!ELEMENT stack-of--purchase-orders (purchase-order) + >
<!ELEMENT purchase-order (buyer-name, address+, city, state, zip, order-line+) >
<!ELEMENT buyer-name (#PCDATA) >
<!ELEMENT address (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT order-line (product, quantity, price) >
<!ELEMENT product (#PCDATA) >
<!ELEMENT quantity (#PCDATA) >
<!ELEMENT price (#PCDATA) >
]

In the DTD, all the elements are defined with their own sub-elements. For example, purchase-order can have one buyer-name, at least one address, one city, one state, one zip and at least one order-line. The data type of each sub-element will be defined.

The W3C XML schema definition

The Document Type Definition (DTD) language, which is native to the XML specification, is a schema language that is of relatively limited capability. As the XML messages become more and more popular, the requirements for validating XML documents have to be improved as well. Another very popular, more expressive XML schema language, XML Schema came out at this stage.

An XML schema is a description of a type of XML document, typically expressed in terms of constraints on the structure and content of documents of that type, above and beyond the basic syntax constraints imposed by XML itself. An XML schema provides a view of the document type at a relatively high level of abstraction.

Like all XML schema languages, XML Schema can be used to express a schema: a set of rules to which an XML document must conform in order to be considered 'valid' according to that schema. However, unlike most other schema languages, XML Schema was also designed with the intent of validation resulting in a collection of information adhering to specific data types, which can be useful in the development of XML document processing software, but which has also provoked criticism. [2]

Here is an XML schema example called DeliveryReceipt.xsd:

	<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

 <xs:element name = "DeliveryReceipt">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "Customer">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref = "Name" />

 <xs:element ref = "Address" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name = "Items">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref = "DeliveryItem"

 minOccurs = "1"

 maxOccurs = "unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name = "deliveryID" type = "xs:integer" />

 <xs:attribute name = "dateReceived" type = "xs:date" />

 </xs:complexType>

 </xs:element>

 <xs:element name = "Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "FirstName" type = "xs:string" />

 <xs:element name = "MiddleInitial" type = "xs:string"

 minOccurs = "0" maxOccurs = "1" />

 <xs:element name = "LastName" type = "xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name = "Address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "AddressLine1" type="xs:string" />

 <xs:element name = "AddressLine2" type = "xs:string"

 minOccurs = "0" maxOccurs = "1" />

 <xs:element name = "Town" type = "xs:string" />

 <xs:element name = "City" type = "xs:string"

 minOccurs = "0" maxOccurs = "1" />

 <xs:element name = "StateProvinceCounty"

 Type = "xs:string"/>

 <xs:element name = "ZipPostCode" type = "xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name = "DeliveryItem">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "Description" type = "xs:string"/>

 </xs:sequence>

 <xs:attribute name = "quantity" type = "xs:integer" />

 </xs:complexType>

 </xs:element>

</xs:schema>

Comparison of DTD and XML schema

An introduction is made above for DTD and XML schema, now it is turn to the comparison between them. Data types are not specified in DTD, in this case, users can enter what values they like, even some funny data. Like the element phone, users can enter a string value as long as it is a parsed value, but in reality, phone number is a number value. Also the DTD format is so flat that it is difficult to know which one is root and which element is sub-element, since it is not a sharked format. As an old schema, DTD is less defined for the attributes.

The XML Schema defines the rules more specified than a DTD. It not only contains elements and attributes, but also data types. In this way, the XML documents are defined much more specified, which makes the validation more advanced. It is written in a shaped format so that users can specify the root, elements and attributes quickly. The XML Schema is such a powerful validating language that it is more or less complicated to implement.

There are a number of advantages to using XML Schemas over DTDs. In particular:

· As they are written in XML syntax (which DTDs were not), users do not have a new syntax to learn before starting learning the rules of writing a schema. It also means that users can use any of the tools they would use to work with XML documents (from authoring tools, through SAX and DOM, to XSLT), to work with XML Schemas.

· The support for datatypes used in most common programming languages, and the ability to create a own datatypes, means that user can constrain the document content to the appropriate type required by applications, and / or replicate the properties of fields found in databases.

· It provides a powerful class and type system allowing an explicit way of extending and re-using markup constructs, such as content models, which is far more powerful than the use of parameter entities in DTDs, and a way of describing classes of elements to facilitate inheritance.

· The support for XML Namespaces allows users to validate documents that use markup from multiple namespaces and means that users can re-use constructs from schemas already defined in a different namespace.

· They are more powerful than DTDs at constraining mixed content models

If you are interested in more information and more examples about those two schemas, please refer to my first report which gave a very detailed explanation for those two schemas. The first report has been posted on my BTech project website.
What is EDIS map?

The core development tool within EDIS for Windows(is the message translation and mapping application EDIS map(. Since its first version, released to run under Microsoft MS-DOS the 1980’s, this application has been used to develop custom message translation scripts for EDIFACT, ANSI X.12 and XML.

The main task of EDIS map is to allow EDIS programmers to add custom code to the events that are fired when an e-commerce message is being either encoded or decoded. Based on a message template, custom translation scripts are developed that automatically manage the creation of new elements as messages are encoded, looping and decoding. This development is performed in a single integrated development environment that allows the developer to edit, document and test in the same environment.

While EDIS for Windows has supported XML translation for the last five years, EDIS map had not been updated to the same level of functionality. The tool provided sophisticated debugging and documentation for EDIFACT and ANSI X.12 message syntaxes but XML presents a number of challenges and opportunities that EDIS wishes to address in this new version.

Using the current EDIS map the time required to develop custom EDIFACT and ANSI X.12 translation scripts is able to be reduced from weeks to days. Tedious hand-translation is still common on e-commerce projects, which contributes to the huge cost of implementing e-business projects. XML is still much more complicated than EDIFACT and ANSI X.12 due the lack of standards. However, with EDIS map, it seems the same time reductions for developing XML translations as on traditional projects.

The version five of the new XML mapping component is now in use internally by EDIS development teams. Its first task has been to map a complicated ebXML message format used by Stora Enso to carry papiNet XML messages via a peer-to-peer project that EDIS is managing for one of their international clients.

EDIS map version 7 is the most significant development task within the new release of EDIS for Windows. Migrating the application to C# requires a complete re-development of the core library functions. In addition, the structure of the message definition files is being re-designed to allow the EDIFACT and ANSI definitions to be stored within the same XML format. Prior to this version, the .EMD file format was a proprietary, comma-separated flat-file.
The EDIS map enhanced development environment
All the discussions following are based on version 5 of the EDIS map which is written in VB.
[image: image2.png]Flo Edt Vew Window Hel

d| &8 4[n[e]o]x]

=lalx]|

DEC_PM_ORDER Decode

<xnl version="1.8">
et naaes
orramyressatatroo
<modi fybate>data</modi
<modi fyTine>data</modi
<expirationDate>data</
<roobroms
ootes
<supplierNumber>dat
<supplierName>data<
<supplierfddress>da

</poTo>
——

~=lolx|

Placemakers XML purchase order
imid

Definion | Codle |

<poNumber>datas/poNumber>

Heading [Purchase order number

Fepeats [0 Datatype [String j| 15 characters

Mandatory |~ Format

Value

Description

[This is the primary purchase order nurmber used within this document

EDIS map has always featured a powerful Integrated Development Environment or IDE that has been at the heart of the application. The key to rapid application development is to provide EDIS developers with a single tool in which they can:

· Create new custom message translation scripts from standard, pre-defined message templates.

· Quickly modify the new script to encode or decode the electronic message according to the business rules that are special for this particular trading partner.

· Access and use meta information about the target application database. EDIS map allows scripts to read from and write to a diverse range of databases, including Microsoft SQL Server 2000(and Interbase(, in their native formats.

· Debug the completed script without leaving the IDE before it is deployed into a production environment.

· Automatically generate documentation to be used in testing with clients. EDIS has always provided complete regression information to clients as part of the deliverables on projects. In traditional mapping environments, this is an expensive and time-consuming exercise since it is usually managed as a separate task using a third-party product like Microsoft Word(. EDIS map allows each message segment to be documented at the same time as the segment is being mapped.

While previous EDIS map versions provided all these features for ANSI X.12 and EDIFACT, the requirements for XML documentation are significantly different. Both EDIFACT and ANSI X.12 have well-established, mature document conventions and directories that have been defined over the last 20 years. Each trading partner’s documentation is instantly recognizable if they have adhered to these conventions.

This maturity is not yet present in the XML community. The proliferation of XML message schemas has in fact reduced the amount of good documentation that trading partners exchange while commissioning projects. Tim Benners-Lee has referred to XML as the “Tower of Babel of the e-commerce community”.

EDIS map version 7 addresses this issue from two different angles. By allowing the seamless export of internal mapping documentation from the IDE directly into Microsoft Word(, EDIS map enables EDIS developers and documentation specialists to create message documentation that can contain a rich set of examples, project plans and message segment information. Traditionally, this documentation is built separately in different tools, driving up the cost of generating deliverables. The poor XML documentation we are seeing on projects from large multi-nationals reflects this gap in the process.

Secondly, EDIS map allows new message translation scripts to be created by importing XML schemas or raw XML messages into the IDE. There are very few tools on the market that manage XML schema importing easily. Often, EDIS receives only example XML messages from intended partners and have to reverse-engineer the messages to generate their own documentation.

The importing of true schemas is a massive undertaking that will not be fully completed until the end of the development project. EDIS is undertaking an extensive evaluation of the current XML schema directions underway at GS1 and W3C to ensure that they are able to process a wide range of schema standards consistently and reliably. At present, competing applications such as Microsoft BizTalk(do not provide the richness of functionality that they believe should be available to EDIS developers. There also appears to be a lot of confusion among developers on how best to manage documentation within their e-business projects. They believe that addressing this gap in the market space will enhance their product significantly and provide some compelling advantages over competing products.

The integrated eBasic development language

[image: image3.png][Eosman . =lalx|
e ot v, Windon. e
D[@(a| ®8| &[w[@]o]x] »]
=lolx| o
DEC_PM_ORDER Decode Placemakers XML purchase order
ST

<xnl version:
Cpurchaseorder | Defton || Eode |

<supplierNunber>data</supplierNunber>
<supplierNane>data</supplierNane>

|__cpotiunber>d
<poType>dat | * Dec_poNunber
<poTransTyp |°
et | ohace. ordor et = vatae
<madifybate | rchase. Order Ref, 4) - “CHG_" Then
<modifyTine * this is a change to an existing purchase order. Set the flag
<expiration * to retrieve the old one and update it.
<currencyco n_flgChanged = True
<poRnount>d IF LoadOrder (n_sPurchasedrderRef) Then
<poComnent> free LT existE
<poFrom> Loglsg “Original purchase order * & m_sPurchase_Order_Ref & _
<custone could not be located”
<custone FlgError = True
<custone o LgDOrE - True
<custone End 1F
<custone [gng sup
<custone
<custone _r‘
<orderpe,
</poFrom>
<poTo>

The heart of EDIS map is its internal development language, eBasic. During the creation of version 5, this language became fully-compatible with Microsoft Visual BASIC version six and Microsoft Visual BASIC™ for Applications. This means that EDIS map provides the same macro language functionality as all the Microsoft Office(products including Word(, Excel(and Outlook(. Developers familiar with these environments will find it easier to develop within EDIS map. This compatibility extends down to common key assignments, single-step tracing during debugging as well as error reporting during run-time and compiling. Extensive on-line help is available that is context sensitive.

The compiler upgrade provides extensions to the language that were not possible in version 4.1 and 5. This includes support for enumerated types and arrays within structures. The IDE also includes IntelliSense™ syntax information while hovering over code. We are investigating function and procedure declaration parameter displays while hovering as well as syntax auto-completion.

Powerful in-line debugging during compile and run-time development

[image: image4.png]Fie.

O

Edt View Window

EEINEE]

Help

(@[]x] b

~=lolx|

DEC_PM_ORDI

<xnl version:
Cposynesant
otrancon
<modi Fybate
<modi FyTine
<expiration
<roobroms
ootes
<supplie

<supplie

E_Message maintenance

ER Decode Placemakers XML purchase order

E_Edit segment (Segment)

Definion | Codle |

~=lolx|

~=lolx|

* Dec_poNunber

Sub_Dec_poNumber (Byval Ualue 05 String)
n_sPurchase Order Ref = Valug)
1f Left$(n_sPurchase_Urder_Ref, 4) = "CHE_" Th

* this is a change to an existing purchase
* to retrie; - -

n_f1gthange CTCTIE M]
IF Loadorde o
Tit exi ‘ ompile error:

Else E
xpecting an existing scalar varizble
Loghtsg ™

o

F1gError
F1gAbort.
End If
End I
End Sub

en
order. set

urchase_0rc

EDIS map provides instant feedback to developers to alert them to syntax errors while they are writing code without leaving the development environment. In the above example, the module-level variable m_sPurchase_Order_Ref has not been declared correctly before it is used. The IDE has also re-loaded the offending section of code automatically for the developer so that it can be corrected instantly. [3]
The Design of the Application
EDIS application has 4 main sub applications which are EDIS admin, EDIS database, EDIS events and EDIS map. Here EDIS map and EDIS events are focused.

In the previous version, EDIS map builds source file which is message definition file defined by AARN Innovation Limited. This source file is compiled to an object called “Script”. The EDIS events will run this script object. The running script can retrieve the data in database to generate a XML message document for client or extract the information in the XML message document sending from client to insert to database.

[image: image5]
However, there is one problem inside this design. Most of time the constraints of data in database are against the constraints of data in XML message document from client. The schema is necessary to add in order to validate the data.

[image: image6]
In the first design, two schemas are considered to add to validate the script and the source. But it seems a little bit duplicated. Since the script is generated based on the source file, it is unnecessary to validate the script again if the source file has been validated. Therefore, the schema with script is decided to be removed.

[image: image7]
Now one XML scheme is added to the design, therefore, the EDIS map source file definition needs to be modified in order to suit the new application.

EDIS map stores the source code for each translation script in a separate message definition file. These files have the extension .EMD, an acronym for EDIS Message Definition. These are primarily ASCII-encoded text files that contain a complete set of message segment definitions encoded as XML-format documents.

[image: image8.png]- <msgDefii>
<msgNarme>ASN</msghame>
<msgType>XML</msgType>
<msgFunct>Encodings/msgruncts
<msgScriptName>ENC_FS_ASN</msgScripthames
<msgver>1.0</msgvers
<msgDesc>Encode Foodstuffs Advanced Shipping Notice message generated by GEAG TIMS</msgDesc>
<docu>ENGODE FOODSTUFFS ASN MESSAGE FROM GEAG TIMS</docu>
L oAU e o DC U
<docu>Encodes an outgoing XML Advanced Shipping Notice from GEAG TIMS to Foodstuffs.</docu>
<docu />
<docu>(c) EDIS Technologies Li
<docu />
<docu>Revision History</docu>
<HOCUS s /AOCL
<docu>GLR-001 23 Nov 2004 BRD Original version</docus
<docu>03 May 2005 BRD Update to include addition Foodstuffs product ident
<imports>GEAC_TIMS. cls</imports>
- <st name="ASN'">
<cds'e/ed>
<cds' Enc_ASN</cd>
<eds! i /o
<cd>Sub Enc_ASN()</cd>
<cd>XML.AddAttribute "partner”, "FOODSTUFFS"</cd>
<cd>XML.AddAttribute "transaction, "ASN"</cd>
<cd>XML.AddAttribute "version®, "1.40"</cd>
<cd>XML.AddAttribute "timestamp”, Format$(Date(), "YYYY-MM-DD") &
<cd>End Sub</cd>
- <st name="CUSTOMER">
- <5t name="COMPANY">
- <ed name="10">
<desc>Party ID</desc>
<cds'e/ed>
<cds' Enc_ID</cd>
<eds! /e
<cd>Sub Enc_ID(Value As String)</cd>
<cd>Value = TIMS.CustomerName</cd>
<cd>End Sub</cd>
<fed>

ited 2004-2005 - All Rights Reserved=/docu>

cation codes.</docu>

& Format§(Time(), "HH:MM:SS")</cd>

The Message Definition is moved out of its original, comma-separated file format into a well-formed XML schema with additional application-definition elements.

In the first stage of the design, this EDIS Message Definition is validated with the XML schema so that they can be combined together. The combined document is compiled to generate a script. However, within the message definition and XML schema, there are many similarities exception the source code in the message definition. In the second stage, the redesign of the message definition is necessary. In order to code this application in a much easier way, message definition is defined as a XML schema to specify the relationship between each element and the information of each element. But new problem comes up, where to put the source code? Thus, in the third stage, two different ways are compared. One is to define an EDIS own namespace for the source code which can be imported to the pure XML schema. Another one is to find some definition existed in the XSD to store the source code. Finally, the second one is approved to be simplest. Since in the later implementation stage, it is more complicated to access the elements in two namespace than in one namespace. Meanwhile, the source code is treated as normal string, the specific source code will be compiled by EDIS own IDE. Therefore, new message definition is generated.

This is the initial message definition file:
[image: image9.png]<2xml version="1.0" encoding="UTF-8"?>
<xsischema xmins:xs ="http:/www.w3.0rg/2001/XMLSchema">

<xsd:element minOccurs="1" maxOccurs="2" fixed="value" name="title"
type="string15" />

<EDIS: element code=......./>
<EDIS: element decryption=......./>

Here is a sample of the final new message definition in XML schema format.

[image: image10.png]<?xml version="1.0" encoding="utf-g8"2>
B <xsd: qualified” xmlns:xsd="httn://usu.w3.ora/2001/XMLSchena">
<xsd:element name="bockstore” type="bookstoreType” />
<xsd:complexType name="bookstoreType">
5 <xsd:sequence maxOccurs="unbounded”>
<xsd:element name="book" type="bookType" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="bookTs
oE Ta=rticlen>

chema elementFormDefault=

locumentation source:
</xsd:docunentation>
<xsd:documentation source:

codemsunat is code? code is

descriptionm>decription is that kind of thing</xsd:documentation>

<xsdielement minOccurs="l" maOccurs=vI" Fixed=Tvalue" mame=rcicle" cype="stringls” />
lement name=rauthor” type=mauchoriame />
lement neme="price" type=txsd:decimal’ />
</xaq: sequence>
<xsdiatcribute name=rgenre" Cype
</xed: complexType>
<xsd:complexType name
<xad:sequence>
<xsdielement name="first-name” cype
<xsdielement name=rlast-name" cyp
</xaq: sequence>
</xed: complexType>
<xsd:simpleType name="scringlss
<xsdizestriction base=rxsd:string">
atcern value=r(A-za-2](0,15)" />
axLengtn value=r"is />
</xsdizestrictions
</x2d: simpleType>
[——|

xad:istring” />

mauthorNanen

xad:istring” />
tring” />

The existed element “xsd:annotation” is used to store the source code. Retrieving or updating the source code is using the corresponding method defined in the Microsoft XSD which can make the application easily understand.
The EDIS map Integrated Development Environment
This section defines the functionality provided in the EDIS map Integrated Development Environment or IDE.

EDIS map implements a Multiple-Document-Interface or MDI framework to allow multiple, overlapping forms to be displayed in a framework. Common toolbars and menus are hosted on the MDI parent forms that are re-configured when each child form is activated.

As EDIS map launches, a splash screen is displayed for several seconds.
[image: image11.png]Rt

View Eroject

Build

Debug

Toels

Window

Help

|}

State Control in the EDIS map environment.
The menu and toolbars are set to their minimal configuration when no document is being edited in the environment. The IDE_MINIMAL state as defined in the enumerated set IDEstates. These individual states control the state machine that determines what functionality is available at any given time within IDE. These states are in turn determined by what the IDE has loaded currently. For example, when no message has been loaded, the following options are available from the menu and toolbars:

Opening a message script
A template message can be selected for editing by selecting the messages XML schema file from the File|Open option on the main menu. This displays a file selection dialog.
[image: image12.png]Fie | Edt View
Project Buid Debug Toos Window Help

g ¢

[image: image13.png]=lalx|

Fle Edt Vew Project Buld Debug Toos Window Help

Open 21|
Lookin: [scrpt Aoz
[books.xsx
Fie name:. Jbooks xsa | Open
Fies ofype: = =)

Select the XML schema file, a template message will be generated and displayed on the screen.
[image: image14.png]EDIS map

Fle Edt Vew Project Buld Debug Toos Window Help

EDIS map Message Definition

[verson="1.0" encoding="UTF-& 2>

Retrieving the message file information
Double clicking the element in the template message file, the corresponding information stored in XML schema file will be retrieved and shown on the screen.
[image: image15.png]

[image: image16.png](B8 frmeDISmapSegment N |= .1}

trton | code |

Headng iz
Repests [1 DataTope. [ims =] [s
™ Mandtory Fomat

Voo [roe

Descrption
[decrption s that kind of thing

Submt

All the variables are retrieved from XML schema. Variable “Heading” is the name of element. “Repeats” stands for how many times this element is repeated in the XML message. “Data Type” and “Characters” is the type of the element and the maximum characters defined for the element. “Value” is the default value for this element in the XML message.
The description and code information are EDIS own information which will be used in the later not involving in this project. Here they are simply treated as pure string.

Editing the message file
Now the user can start to edit the message file. When he finishes editing and submits it, the XSD validation handle will check whether the editing is valid or not. If it is invalid, an error message will be shown. The validation handle will stop editing and trace back to the previous valid state.
[image: image17.png]~=lolx|

e |code |

Headng e

Repects [1 Data Ty [posiean =) [chamctes
™ Mandatory Format 20,15}

Voo [roe

Descrption

[decrption s that kind of thing

Vaidation Error: The Maxtength constraining facet s profibited for Boolean'.

=

Submt.

Here the user wants to change the data type from “String” to “Boolean” which is conflicting with validation rule. Then the validation handle will trace back to the previous valid state that is data type “String”.

[image: image18.png]@ irmeosmapsegment T TE|

trton | code |

Headng iz
Repests [1 Data Tope. [ims =] [chscies
™ Mandtory Fomat

Voo [roe

Descrption
[decrption s that kind of thing

If the user performs a valid editing, the validation handle will update the changed information back to the XML schema. Next time, the user will have a updated XML information.

Here the user just changes the characters, the description and the value string. The updating is valid so that the validation handle will executes the updating operation to the XML schema.

[image: image19.png]|8 frmepismapsegment < £

trton | code |

Heading [

Repests [1 DataTope. [ims =] ([0 chscies

I Mandatory Fomat [AZa2100.15

Ve [ronge v

[decrption s that kind of thing

|change descritioon]

Submt

The EDIS map Implementation strategy
The output of this application seems very simple. But there are some implementation strategies behind the application.

Link the message file to XML schema

The message file is generated based on the input XML schema. The first challenge to implement this application is how to link the message file shown on the screen back to

XML schema. Without solving this problem, it is impossible to continue to implement the project.

In the application, a background message file is generated. When the user chooses the input XML schema, a message file will be generated and displayed on the screen. This message file is in the same folder with XML schema. The schema name and message file name should be matched. For example, if the schema name is “book.xsd”, the generated message file will be called “book.xml”. Each time users want to modify the message on screen, a link between the message file on the background and corresponding XML schema will be created.
Trace back to the previous valid state
When the user wants to edit the message file, if the validation is invalid, the schema will crash because part of the schema will be updated and others are not updated. In order to solve this problem, there is another approach built for the updating. If the updating is not valid, the validation handle will cancel the updating, and trace back to the previous state.
There is a class called “clsSchemaModel.cs” which is such a model to store all the schema information of the previous valid state.

Each time when a user retrieves all the message information through XML schema, the information will be stored into the class “clsSchemaModel.cs”. If there is an invalid updating, the validation handle will stop updating. The information will be retrieved stored in the class previously. The validation handle will write the valid information back to the XML schema, and show them to the user. Now the previous valid message file information is shown to the user. Everything is traced back to the previous state without any modifications.
Coding the application

As the XML schema is very flexible. One XML message can have many different implementation versions of XML schema. One element constraint can have many different implement ways such as using “ref” or “complex type”. Therefore, the coding is extremely complicated. Every situations need to be considered in order to solve as many bugs as possible.

For the coding, recursion method must be used. The application is somehow similar to the XSD tool. The xml message is able to be generated based on the XML schema, and the information stored in the XML schema is able to be accessed.
[image: image20.png]public void accessXSDSchema()

{

foreach (objsct item in nyEnlSchena.ltems)

<

if (item is EnlSchenahttribute)
accessESDSchenadt tribute((InlSchensittribute)iten); ssattribute
elss if (item is inlSchensConplexTyps)
accessESDSchenaConplexType((inlSchenaConplexType)iten, false): //complexType
elss if (item is inlSchensElenent)

accessKSDSchemaElement ((XnlSchensElenent)iten) //element
else if (item is XmlSchemadnnotation)
accessKSDSchenahnnotation((fnlSchenahnnotation)iten); ~/annotation

else if (item is XnlSchemahttributeGroup)
accessHSDSchenadt tributeGroup((1nlSchensittributeGroup)iten); //attributeGroup
else if (item is inlSchemaliotation)
accessSDSchenaliotation((inlSchenaliotation)iten) ; //natation
elss if (item is inlSchensGroup)
accessXSDSchenaGroup((inlSchensGroup)iten)
else
Console WriteLine("Not Inplemented

Each item in the XML schema should be implemented. If the current item is element, the operation can be executed. Otherwise, the recursion method is needed to search the element and its type. Inside its type, the recursion method may be needed if the type contains other types.
[image: image21.png]//EnlSchenaParticle
public void accessESDSchenaParticle(inlSchensParticle particle)
{
if (particle is XnlSchenaElenent)
access¥SDSchensElenent ((inlSchensElenent Jparticle) ;
else if (particle is InlSchemaSequence)
<
foreach (inlSchensParticle particlel in ((inlSchensSequence)particls) Items)
accessXSDSchenaParticls(particlel):

B
clsd
Console.Writeline("Not Implemented for this type: {0

. particle.TaString()):

Here a good understanding of XML schema structure is required which I have introduced in section “Background: DTD and XML schema”.

If you are interested in the application coding, please refer to my application codes in my BTech project website.

The Limitations
In this implementation, only retrieving and updating are considered to be implemented. So in this stage, deleting or inserting is not available which may be continued to implement in the later stage.

The retrieving and updating functionalities for attribute are not implemented. As based on the requirements of the sponsor Barry, the design of the application and the main implementation for element are focused.
Conclusion

To sum up, this project (EDIS map application) allows new message translation scripts to be created by importing XML schemas or raw XML messages into the IDE. The information of the message translation scripts can be retrieved from the XML schema and edited back to the XML schema. There are very few tools on the market that manage XML schema importing easily. Often, EDIS receives only example XML messages from intended partners and have to reverse-engineer the messages to generate their own documentation. In most points, this project is implemented successfully. But the importing of true schemas is a massive undertaking that has not been fully completed until now.
In the later implementation, more functionality is able to be added based on this version of EDIS map application. As mentioned earlier, the retrieving and updating operations for attributes in XML schema can be implemented. The other operations such as deleting and inserting are better to complete. The message translation scripts created in text pattern here can be improved to tree view pattern which is more convenient for users to view.

References
[1] http://en.wikipedia.org/wiki/XML
[2] http://en.wikipedia.org/wiki/Document_Type_Definition
[3] Documentation form Barry Dowdeswell (AARN Innovation Limited)

EDIS map Functional specification
Build

Run script

Compile source

Schema

EDIS map

XML message

Source

Script

EDIS events

Data

Database

Build

Run script

Compile source

EDIS map

XML message

Source

Script

EDIS events

Data

Database

Schema

Schema

Build

Run script

Compile source

EDIS map

XML message

Source

Script

EDIS events

Data

Database

Build

Run script

Compile source

Schema

EDIS map

XML message

Source

Script

EDIS events

Data

Database

PAGE
29

